B-UP1 – Optimal Design of the Cellular Structures for a Lightweight Car Body

Partner: Felix Sajadi, Prof. Siegfried Schmauder
Institute for Materials Testing, Materials Science and Strength of Materials
Projektraufzeit: 01.08.2020 – 30.04.2021

Abstract
Today’s political objectives and social demands call for a significant reduction in energy consumption and greenhouse emissions in the transport sector. Therefore, it is necessary to consider a reduction in vehicle weight. Cellular lattice structures with a repeating structure of a predefined unit cell can guarantee weight reduction whilst increasing the impact energy absorption. This project aims to identify optimal cellular lattice structures for a lightweight car body through virtual design, numerical calculation as well as experimental testing and production via Laser Based Powder Bed Fusion Additive Manufacturing technology (PBF-LB).

Work plan:
- Virtual design of different types of cellular structures, e.g., strut, shell, and TPMS-based
- Mesoscale simulation in order to calculate stiffness, elastic anisotropy and energy absorption
- PBF-LB fabrication of aluminum alloy specimens and experimental validation through various mechanical tests
- Integration of the optimized structure in a bumper-mounting bracket component
- Macroscale performance simulation under the operational loading condition
- Final design optimization of the component and providing a virtual sketch